Pseudo-Hermitian Quantum Mechanics
نویسنده
چکیده
A diagonalizable non-Hermitian Hamiltonian having a real spectrum may be used to define a unitary quantum system, if one modifies the inner product of the Hilbert space properly. We give a comprehensive and essentially self-contained review of the basic ideas and techniques responsible for the recent developments in this subject. We provide a critical assessment of the role of the geometry of the Hilbert space in conventional quantum mechanics to reveal the basic physical principle motivating our study. We then offer a survey of the necessary mathematical tools, present their utility in establishing a lucid and precise formulation of a unitary quantum theory based on a non-Hermitian Hamiltonian, and elaborate on a number of relevant issues of fundamental importance. In particular, we discuss the role of the antilinear symmetries such as PT , the true meaning and significance of the so-called charge operators C and the CPT -inner products, the nature of the physical observables, the equivalent description of such models using ordinary Hermitian quantum mechanics, the pertaining duality between local-non-Hermitian versus nonlocal-Hermitian descriptions of their dynamics, the corresponding classical systems, the pseudo-Hermitian canonical quantization scheme, various methods of calculating the (pseudo-) metric operators, subtleties of dealing with time-dependent quasi-Hermitian Hamiltonians and the path-integral formulation of the theory, and the structure of the state space and its ramifications for the quantum Brachistochrone problem. We also explore some concrete physical applications and manifestations of the abstract concepts and tools that have been developed in the course of this investigation. These include applications in nuclear physics, condensed matter physics, relativistic quantum mechanics and quantum field theory, quantum cosmology, electromagnetic wave propagation, open quantum systems, magnetohydrodynamics, quantum chaos, and biophysics. PACS number: 03.65.-w, 03.65.Ca, 11.30.-j
منابع مشابه
Pseudo-Hermiticity versus PT Symmetry: The structure responsible for the reality of the spectrum of a non-Hermitian Hamiltonian
We introduce the notion of pseudo-Hermiticity and show that every Hamiltonian with a real spectrum is pseudo-Hermitian. We point out that all the PT -symmetric non-Hermitian Hamiltonians studied in the literature are pseudo-Hermitian and argue that the structure responsible for the reality of the spectrum of these Hamiltonian is their pseudo-Hermiticity not PT -symmetry. We explore the basic pr...
متن کاملPseudo-Hermiticity versus PT Symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
We introduce the notion of pseudo-Hermiticity and show that every Hamiltonian with a real spectrum is pseudo-Hermitian. We point out that all the PT -symmetric non-Hermitian Hamiltonians studied in the literature belong to the class of pseudo-Hermitian Hamiltonians, and argue that the basic structure responsible for the particular spectral properties of these Hamiltonians is their pseudo-Hermit...
متن کاملIs Pseudo-Hermitian Quantum Mechanics an Indefinite-Metric Quantum Theory?
With a view to eliminate an important misconception in some recent publications, we give a brief review of the notion of a pseudo-Hermitian operator, outline pseudo-Hermitian quantum mechanics, and discuss its basic difference with the indefinite-metric quantum mechanics. In particular, we show that the answer to the question posed in the title is a definite No.
متن کاملPseudo-Supersymmetric Quantum Mechanics and Isospectral Pseudo-Hermitian Hamiltonians
We examine the properties and consequences of pseudo-supersymmetry for quantum systems admitting a pseudo-Hermitian Hamiltonian. We explore the Witten index of pseudo-supersymmetry and show that every pair of diagonalizable (not necessarily Hermitian) Hamiltonians with discrete spectra and real or complex-conjugate pairs of eigenvalues are isospectral and have identical degeneracy structure exc...
متن کاملPseudo-Hermitian quantum mechanics with unbounded metric operators.
I extend the formulation of pseudo-Hermitian quantum mechanics to η(+)-pseudo-Hermitian Hamiltonian operators H with an unbounded metric operator η(+). In particular, I give the details of the construction of the physical Hilbert space, observables and equivalent Hermitian Hamiltonian for the case that H has a real and discrete spectrum and its eigenvectors belong to the domain of η(+) and cons...
متن کاملPhysical Aspects of Pseudo-Hermitian and PT -Symmetric Quantum Mechanics
For a non-Hermitian Hamiltonian H possessing a real spectrum, we introduce a canonical orthonormal basis in which a previously introduced unitary mapping of H to a Hermitian Hamiltonian h takes a simple form. We use this basis to construct the observables Oα of the quantum mechanics based on H. In particular, we introduce pseudo-Hermitian position and momentum operators and a pseudo-Hermitian q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008